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5.1 INTRODUCTION

Dams provide society with essential benefits such as water supply, flood control, recreation,
hydropower, and irrigation. However, catastrophic flooding occurs when a dam fails and the
impounded water escapes through the breach to cause death and destruction of people and
their developments existing in the downstream valley. Usually, the magnitude of the flow
greatly exceeds all previous floods and the response time available for warning the populace
is much shorter than for precipitation-runoff floods. According to reports by the International
Commission on Large Dams (ICOLD, 1973) and the United States Committee on Large
Dams in cooperation with the American Society of Civil Engineers (ASCE/USCOLD, 1975),
about 38 percent of all dam failures are caused by overtopping of the dam due to inadequate
spillway capacity and by spillways being washed out during large inflows to the reservoir
from heavy precipitation runoff. About 33 percent of dam failures are caused by seepage or
piping through the dam or along internal conduits, while about 23 percent of the failures are
associated with foundation problems, and the remaining failures are due to slope embankment
slides, damage or liquefaction of earthen dams from earthquakes, and overtopping of the dam
by landslide-generated waves within the reservoir. Middlebrooks (1952) describes earthen
dam failures that occurred within the United States prior to 1951. Johnson and Illes (1976)
summarize 300 dam failures throughout the world.

The potential for catastrophic flooding due to a dam failure (breach) was brought to the
attention of politicians, emergency action personnel, engineers, and portions of the general
populace within the United States during the 1970’s by several catastrophic floods due to dam
failures, i.e., the Buffalo Creek coal-waste dam in 1972, the Teton Dam in 1976, the Laurel
Run Dam in 1977, and the Kelly Barnes Dam in 1977.

The Buffalo Creek coal-waste dam collapsed (Davies et al., 1975) on the Middle Fork, a
tributary of Buffalo Creek in southwestern West Virginia near Saunders. Most of the dam
was eroded away very rapidly on February 26, 1972, due to overtopping waters; the breached
dam released about 500 acre-ft of impounded waters into Buffalo Creek valley, causing the
most catastrophic flood in the state’s history with the loss of 118 lives, 500 homes, and
property damage exceeding $50 million.

The Teton Dam near Sugar City, Idaho, a 300 ft high earthen dam with 250,000 acre-ft
of stored water, failed (Ray et al., 1976) on June 5, 1976, due to internal piping, killing 11
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people, making 25,000 homeless, and inflicting about $400 million in damages to the
downstream Teton-Snake River Valley.

The 45-ft high earthen embankment Laurel Run Dam near Johnstown, Pennsylvania, was
overtopped and breached (Chen and Armbruster, 1980) July 20, 1977, releasing 450 acre-ft
of stored water. This resulted in the death of 40 people and heavy property damages.

The Kelly Barnes Dam near Toccoa, Georgia, an earthen embankment dam reconstructed
several times, finally reaching a height of about 35 ft, with 600 acre-ft of storage, was
overtopped and subsequently breached (Federal Investigative Board, 1977) November 6,
1977. This resulted in the death of 39 people who resided about 0.75 mile downstream of the
dam.

Within the United States, as well as in many nations throughout the world, there are
many dams that are 30 or more years old, and many of the older dams are a matter of serious
concern because of increased hazard potential due to downstream development and increased
risk of failure due to structural deterioration and/or inadequate spillway capacity. A report
by the U.S. Army (1981) gives an inventory of the approximately 70,000 dams within the
United States with heights greater than 25 ft or storage volumes in excess of 50 acre-ft. The
report also classifies some 20,000 of these as being "so located that failure of the dam could
result in loss of human life and appreciable property damage ..."

In addition to the man-made dams described above, natural formed dams can also
produce dam-breach floods. Occasionally dams are formed naturally when a landslide blocks
a river that traverses through rugged terrain. Eventually the landslide-formed dam is
overtopped by the blocked and ponded river flow, and a breach is eroded through the
naturally formed dam creating a dam-breach flood.

A distinguishing feature of dam-breach or dam-break floods is the great magnitude of the
peak discharge when compared to any precipitation runoff-generated floods that could occur
in the same valley. The dam-break flood is usually many times greater (an order of
magnitude or more) than the runoff flood of record. Another distinguishing characteristic of
dam-break floods is the extremely short time from beginning of rise until the occurrence of
the peak and very short total duration time of the flood. The time to peak, in almost all
instances, is synonymous with the interval of time required for the breach (failure) to develop
completely once it starts to form. This time of failure is of the order of minutes for most
dams, although some very large dams may have a time of failure of an hour or greater. This
characteristic, along with the great magnitude of the peak discharge, causes the dam-breach
flood wave to have acceleration components of a far greater significance that those associated
with a precipitation runoff-generated flood and helps to produce significant wave peak
attenuation.

5.2 BREACH DESCRIPTION

The breach is the opening formed in the dam as it fails. The actual failure mechanics are
understood only partially for earthen dams and less for concrete dams. Prior to about 1970,
efforts to predict downstream flooding due to dam failures usually assumed that the dam
failed completely and instantaneously, e.g., Ritter (1892), Schocklitsch (1917), Ré (1946),
Dressler (1954), Stoker (1957), Su and Barnes (1969), and Sakkas and Strelkoff (1973).
Others, such as the Army Corps of Engineers (1960) recognized the need to assume a partial
rather than complete breach; however, it was still assumed the breach occurred
instantaneously. The assumptions of instantaneous and complete breaches were used for
reasons of convenience when applying certain mathematical techniques for analyzing dam-
breach flood waves. The assumptions are somewhat appropriate for concrete arch dams, but
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are not appropriate for earthen dams and concrete gravity dams. For these dams, as well as
well concrete arch dams, the breach should be considered (1) to develop over a finite interval
of time (7) and (2) to encompass only a portion of the dam except for concrete arch dams
(Fread and Harbaugh, 1973; Fread, 1977).

Partial dam breaches with 7 > 0 result in considerably smaller dam-breach floods than
instantaneous (7 = 0) and complete breaches. It is readily apparent that a smaller breach will
allow less peak outflow than a larger breach; however, it is not quite as apparent that a larger
failure time resulits in less peak outflow. As the dam breach forms, the outflow through the
breach reduces the reservoir storage contained by the dam, resulting in a reduction of the
reservoir water level. The rate of flow through the breach is proportional to the height (head)
of the water above the breach bottom (as in weir-type flow). Therefore, as the breach forms,
the water level reduces; and when the breach is fully formed, the resuiting head of water is
less than that if the breach formed instantaneously or even at a faster rate. The smaller head
of water available to produce flow through the breach when it completely forms (both in the
vertical and horizontal directions) results in a smaller peak outflow and a smaller dam-breach
flood. The extent of flood peak reduction due to a larger failure time is directly proportional
to the magnitude of the final breach width and inversely proportional to the magnitude of the
reservoir storage volume.

5.2.1  Mathematical Description of Breach

The breach may be described mathematically using the following parameters: the time of
failure (7), the terminal bottom width parameter (b), another parameter (z) which provides for
breach shapes of rectangular, triangular, or trapezoidal. The parametric approach is
convenient in predicting dam-breach floods for reasons of simplicity, generality, wide
applicability, and the uncertainty in the actual failure mechanism. The parametric approach
to the breach description follows that used by Fread and Harbaugh (1973) and later by Fread
(1977, 1985, 1988).

The shape parameter (z) is the side slope of the breach, i.e., 1 vertical:z horizontal. The
value for z varies from O to about unity. Its value depends on the angle of repose of the
compacted and wetted materials composing the dam and through which the breach develops.
Rectangular, triangular, or trapezoidal shapes may be specified by using various combinations
of values for z and b, e.g., z=0 and b> 0 produces a rectangular-shaped breach, and z>0
and b=0 yields a triangular-shaped breach. The terminal bottom width (b) is related to the
average width of the breach (b) by the following:

b=b - zH, (5.1)

in which H; is the height of the dam. In the parametric description of the breach, the breach
bottom width starts at a point at the crest of the dam (see Fig. 5.1) and enlarges at a linear or
nonlinear rate over the failure time () until the terminal bottom width (b) is attained and the
breach bottom has eroded to the minimum elevation, h,,. The instantaneous bottom elevation
of the breach is described as a function of time (t,) according to the following:

h, = h, - (h,-h, ) (t,/7)* 0<st <7 5.2)
in which h, is the elevation of the top of the dam, h,,, is the final elevation of the breach

bottom which is usually, but not necessarily, the bottom of the reservoir or outlet channel
bottom, t, is the time since beginning of breach formation, and p is the parameter specifying
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Figure 5.1 Front view of dam showing formation of breach

the degree of nonlinearity, e.g., p=1 is a linear formation rate, while p=2 is a nonlinear
quadratic rate; the range for p is 1 < p < 4, with the linear rate usually assumed. The
instantaneous bottom width (b;) of the breach is given by the following:

b, = b(t,/7)* 0<t<r (5.3)

When simulating a dam failure, the actual breach formation can commence when the
reservoir water surface elevation (h) exceeds a specified value, h,.  This feature permits the
simulation of an overtopping of a dam in which the breach does not form until a sufficient
amount of water has passed over the crest of the dam to have eroded away the downstream
face of the dam. The breach can also commence when a specified start-of-failure (t;) time is
reached in the simulation. A piping failure may also be simulated by specifying the initial
centerline elevation of the pipe, using Egs. (5.2)(5.3), letting the top of the pipe form at the
same rate as the bottom of the pipe, and letting z = 0. It is possible to also limit the breach
formation to only the spillway section of the dam.

5.2.2 Concréte Dams

Concrete gravity dams tend to have a partial breach as one or more monolith sections formed
during the construction of the dam are forced apart and over-turned by the escaping water.
The time (7) for breach formation is in the range of a few minutes depending on the number
of monoliths that fail in succession. It is difficult to predict the number of monoliths which
may be displaced or fail; however, by using a dam-breach flood prediction model such as
described later in Section 5.3.1.5, and making several separate applications of the model
wherein the breach width parameter (b) representing the combined lengths of assumed failed
monoliths is varied in each application, the resulting reservoir water surface elevations can be
used to indicate the extent of reduction of the loading pressures on the dam. Since the
loading diminishes as b is increased, a limiting safe loading condition which would not cause
further failure may be estimated. Unlike the concrete gravity dams, concrete arch dams tend
to fail completely and are assumed to require only a few minutes for the breach formation.
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The shape of the breach is usually approximated as rectangular for either gravity or arch
concrete dams; this is accomplished by using a value of zero for the shape parameter ).

5.2.3 Earthen Dams

Earthen dams which exceedingly outnumber all other types of dams do not tend to completely
fail, nor do they fail instantaneously. The fully formed breach in earthen dams tends to have
an average width (b) in the range (H, < b < 5H,) where H, is the height of the dam. The
middle portion of this range for b is supported by the summary report of Johnson and Illes
(1976) and the upper range by the report of Singh and Snorrason (1982). Breach widths for
earthen dams are therefore usually much less than the total length of the dam as measured
across the valley. Also, the breach requires a finite interval of time (7) for its formation
through erosion of the dam materials by the escaping water. Total time of failure (for
overtopping) may be in the range of a few minutes to usually less than an hour, depending on
the height of the dam, the type of materials used in construction, the extent of compaction of
the materials, and the magnitude and duration of the overtopping flow of the escaping water.
The time of failure (7) as used herein is the duration of time between the first breaching of
the upstream face of the dam until the breach is fully formed. For overtopping failures, the
beginning of breach formation at the upstream face of the dam occurs after the downstream
face of the dam has eroded away and the resulting crevasse has progressed back across the
width of the dam crest to reach the upstream face.

Piping failures occur when initial breach formation takes place at some point below the
top of the dam due to erosion of an internal channel through the dam by the escaping water.
Times of failure are usually considerably longer for piping than overtopping failures. As the
erosion proceeds, a larger and larger opening is formed; this is eventually hastened by
caving-in of the top portion of the dam.

Poorly constructed coal-waste (mine tailings) dams which impound water tend to fail
more rapidly than well-designed dams and have average breach widths in the upper range of
those for the earthen dams.

5.2.3.1 Statistically-Based Breach Predictors. Some statistically derived predictors for b and

7 have been presented in the literature, i.e., MacDonald and Langridge-Monopolis (1984) and
Froehlich (1987, 1995). Using Froehlich’s data of the properties of 63 breaches of dams
ranging in height from 12 to 285 ft, with 6 of the dams greater than 100 ft, the following
predictive equations were obtained:

b =95k, (VH)*> ‘ (.4)

T = 0.59 VO/HM (5.5)

in which b is average breach width (f), 7 is time of failure (hrs), k, = 0.7 for piping and 1.0
for overtopping, V, is volume (acre-ft) and H, is the height (ft) of water over the breach
bottom (H, is usually about the height of the dam). Standard error of estimate for b was
182 ft which is an average error of +56 percent of b, and the standard error of estimate for
7 was t1.1 hrs which is an average error of +86 percent of 7.

5.2.3.2 Ww Another means of determining the breach

properties is the use of physically-based breach erosion models. Cristofano (1965) modeled
the partial, time-dependent breach formation in earthen dams; however, this procedure
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required critical assumptions and specification of unknown critical parameter values. Also,
Harris and Wagner (1967) used a sediment transport relation to determine the time for breach
formation, but this procedure required specification of breach size and shape in addition to
two critical parameters for the sediment transport relation. Then, Ponce and Tsivoglou
(1981) presented a rather computationally complex breach erosion model which coupled the
Meyer-Peter and Muller sediment transport equation to the one-dimensional differential
equations of unsteady flow (Saint-Venant equations) and sediment conservation. They
compared the model’s predictions with observations of a breached landslide-formed dam on
the Mantaro River in Peru. The results were substantially affected by the judicious selection
of the breach channel hydraulic friction factor (Manning n), an empirical breach width-flow
relation parameter, and an empirical coefficient in the sediment transport equation.

Another physically-based breach erosion model (BREACH) for earthen dams was
developed (Fread, 1984, 1987) which substantially differed from the previously meationed
models. It predicted the breach characteristics (size, shape, time of formation) and the
discharge hydrograph emanating from a breached earthen dam which was man-made or
naturally formed by a landslide. The model was developed by coupling the conservation of
mass of the reservoir inflow, spillway outflow, and breach outflow with the sediment
transport capacity of the unsteady uniform flow along an erosion-formed breach channel. The
bottom slope of the breach channel was assumed to be the downstream face of the dam. The
growth of the breach channel was dependent on the dam’s material properties (D, size, unit
weight, internal friction angle, cohesive strength). The model considered the possible
existence of the following complexities: (1) core material properties which differ from those
of the outer portions of the dam; (2) formation of an eroded ditch along the downstream face
of the dam prior to the actual breach formation by the overtopping water; (3) the downstream
face of the dam could have a grass cover or be composed of a material such as rip-rap or
cobble stones of larger grain size than the major portion of the dam; (4) enlargement of the
breach through the mechanism of one or more sudden structural collapses of the breaching
portion of the dam due to the hydrostatic pressure force exceeding the resisting shear and
cohesive forces; (5) enlargement of the breach width by collapse of the breach sides
according to slope stability theory; and (6) the capability for initiation of the breach via
piping with subsequent progression to a free-surface breach flow. The outflow hydrograph
was obtained through a computationally efficient time-stepping iterative solution. This breach
erosion model was not subject to numerical stability/convergence difficulties experienced by
the more complex model of Ponce and Tsivoglou. The model’s predictions were favorably
compared with observations of a piping failure of the large man-made Teton Dam in Idaho,
the piping failure of the small man-made Lawn Lake Dam in Colorado, and an overtopping
activated breach of a large landslide-formed dam in Peru. Model sensitivity to numerical
parameters was minimal; however, it was somewhat sensitive to the internal friction angle of
the dam’s material and the extent of grass cover when simulating man-made dams; and it was
sensitive to the cohesive strength of the material composing landslide-formed dams. A
reasonable variation of cohesion and internal friction angle parameters produced less than
+20 percent variation in the breach properties.

Other physically-based breach erosion models include the following: (1) the BEED
model (Singh and Quiroga, 1988) which is similar to the BREACH model except it considers
the effect of saturated soil in the collapse of the breach sides and it routes the breach outtiow
hydrograph through the downstream valley using a simple diffusion routing technique
(Muskingum-Cunge) which neglects backwater effects and can produce significant errors in
routing a dam-breach hydrograph when the channel/valley slope is less than 0.003; (2) a
numerical model (Macchione and Sirangelo, 1988) based on the coupling of the one-
dimensional unsteady flow (Saint-Venant) equations with the continuity equation for sediment
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transport and the Meyer-Peter and Muller sediment transport equation; (3) a numerical model
(Bechteler and Broich, 1993) based on the coupling of the two-dimensional unsteady flow
equations with the sediment continuity equation and the Meyer-Peter and Muller sediment
transport equation; and (4) a series of analytical models (Singh and Quiroga, 1988) requiring
calibration of critical parameters. A more detailed description of the BREACH model
(chosen as a practical representative of physically-based breach models) follows.

5.2.3.3 BREACH Model. The BREACH model utilizes the principles of soil mechanics,
hydraulics, and sediment transport to simulate the erosion and bank collapse processes which
form the breach. Reservoir inflow, storage, and spillway characteristics, along with the
geometrical and material properties of the dam (D, size, cohesion, internal friction angle,
porosity, and unit weight) are utilized to predict the outflow hydrograph. The essential model
components are described as follows.

Reservoir level computation. Conservation of mass is used to compute the reservoir
water surface elevation (h) due to the influence of a specified reservoir inflow hydrograph
(Q), spillway overflow (Q,,) as determined from a spillway rating table, broad-crested weir
flow (Q,) over the crest of the dam, broad-crested weir flow (Q,) through the breach, and the
reservoir storage characteristics described by a surface area (S,)-elevation table. Letting Ah
represent the change in reservoir level during a small time interval (At), the conservation of
mass requires the following relationship:

an - 00864t G5 _5 -Q, -Q (5.6)

in which the units of Ah, At, Q and S, are ft, sec, ft*/sec, and acre-ft, respectively, and the
bar (7) denotes the average value during the At time interval. Thus, the reservoir elevation
(h) at time (t) can easily be obtained since h = h’ + Ah, in which h’ is the reservoir
elevation at time (t - At). If the breach is formed by overtopping, the breach outflow is
simulated using a broad-crested weir flow equation, i.e.,

Q =3 A -h)* 5.7

If the breach is formed by piping, a short-tube orifice flow equation is used to simulate the
breach outflow, i.e.,

Q, = A28 - h)/(1 + fL/d_]°* (5.8)

in which A, is the area (ft®) of flow over the weir or orifice area, h, is the elevation of the
bottom of the breach at the upstream face of the dam, h, is the specified center-line elevation
of the pipe, f is the Darcy friction factor which is dependent on the D, grain size, L is the
length of the pipe, and d,, is the diameter or width of the pipe.

Breach width. Initially the breach is considered rectangular with the width (B,) based
on the assumption of optimal channel hydraulic efficiency, B, = By,, in which y, is the
critical depth of flow at the entrance to the breach; i.e., y. = 2/3 (h - h,). The factor B, is 2
for overtopping and 1 for piping. The initial rectangular-shaped breach can change to a
trapezoidal shape when the sides of the breach collapse due to the breach depth exceeding the
limits of a freestanding cut in soil of specified properties of cohesion (C), internal friction
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angle (¢), unit weight (y), and existing angle (') that the breach cut makes with the
horizontal. The collapse occurs when the effective breach depth (d") exceeds the critical

depth (d,), i.e.,
d, = 4C cos ¢ sin ¢'/[y - y cos(@ - )] (5.9)

The effective breach depth (d”) is determined by reducing the actual breach depth (d) by y./3
to account for the supporting influence of the water flowing through the breach. The 6’ angle
reduces to a new angle (9") upon collapse which is simply 6" = (6’ + ¢)/2.

Breach erosion. Erosion is assumed to occur equally along the bottom and sides of the
breach except when the sides of the breach collapse. Then, the breach bottom is assumed not
to continue to erode downward until the volume of collapsed material along the length of the
breach is removed at the rate of sediment transport occurring along the breach at the instant
before collapse. After this characteristically short pause, the breach bottom and sides
continue to erode. Material above the wetted portion of the eroding breach sides is assumed
to simultaneously collapse as the sides erode. Once the breach has eroded to the specified
bottom of the dam, erosion continues to occur only along the sides of the breach. The rate at
which the breach is eroded depends on the capacity of the flowing water to transport the
eroded material. The Meyer-Peter and Muller sediment transport relation, as modified by
Smart (1984) for steep channels, is used, i.e.,

Q, = 3.64(D,/D,,)* %’f. P S** (DS - 0.0054 D 7) (5.10)

in which Q, is the sediment transport rate, Dy, Dy, and Dy, are the grain sizes in (mm) at
which 90 percent, 30 percent, and 50 percent respectively of the total weight is finer, D is the
hydraulic depth of flow computed from Manning’s equation for flow along the breach channel
at any instant of time, S is the breach bottom slope which is assumed to always be parallel to
the downstream face of the dam, 7, is Shield’s critical sheer stress that must be exceeded
before erosion occurs, and n is the Manning friction (roughness) coefficient which can be
computed from the Strickler equation (Chow, 1959) for sand-bed channels or for gravel-bed
channels (Jarrett, 1984) or simply estimated. The Ad incremental thickness eroded from the
breach bottom and each side during a very short interval of time (At) is given by:

Ad’ = QAU[P L(1 - p)] G.11)

in which P is the total perimeter of the breach, L is the length of the breach through the dam,
and p is the porosity of the breach material.

Computational algorithm. The sequence of computations in the model are iterative
since the flow into the breach is dependent on the bottom elevation of the breach and its
width while the breach dimensions are dependent on the erosion depth (Ad) which is
dependent on the sediment transport capacity of the breach flow; and the sediment transport
capacity is dependent on the breach size and flow. A simple iterative algorithm is used to
account for the mutual dependence of the flow, erosion, and breach properties. An estimated
incremental erosion depth (Ad) is used at each time step to start the iterative solution. This
estimated value can be extrapolated from previously computed values. Convergence occurs

when Ad’, computed from Eq. (5.11), differs from the estimated Ad by less than an
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acceptable specified tolerance. Typical applications of the BREACH model require less than
a minute on microcomputers. The computations show very little sensitivity to a reasonable
variation in the specified time step size. The model is numerically robust, i.e., it has not
shown any numerical instability or convergence problems.

Applications. BREACH was applied to the piping initiated failure of the earthfill Teton
Dam which breached in June 1976, releasing an estimated peak discharge (Q,) of 2.2 million
cfs having a range of 1.6 to 2.6 million cfs. The simulated breach hydrograph is shown in
Fig. 5.2. The computed final top breach width (W) of 645 ft compared well with the
observed value of 650 ft. The computed slide slope of the breach was 1:1.06 compared to
1:1.00. The computed time (T,) to peak flow was 2.2 hr. Additional information on this and
another successful application of BREACH to the overtopping failure of a naturally formed
landslide dam on the Mantaro river in Peru, which breached in June 1974, can be found
elsewhere (Fread, 1984). The model has also been satisfactorily verified with the piping-
initiated failure of the 28 ft high Lawn Lake Dam in Colorado (Jarrett and Costa, 1982).
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Figure 5.2 Teton Dam: Predicted and observed breach outflow hydrograph and breach
properties



524 Assessment of Breach Parameters

A method for quickly checking the overall reasonableness of the selected breach parameters
(b and 7) uses the following equations:

QP. =370 (Vr Hd)o's (5.12)

Q =-31b [_C_ (5.13)

in which Q, and Q, are the expected peak discharge (cfs) through the breach, V, and H, are
the reservoir volume (acre-ft) and height (ft) of dam, respectively, and C = 23.4 A,/b in
which A, is the surface area (acres) of the reservoir at the top of the dam. Eq. (5.12) was
developed by Hagen (1982) from historical data of 14 dam failures; it provides a maximum
envelope of all 14 of the observed discharges. It over-estimates the peak discharges for each
of some 21 observed dam failures (including the previously mentioned 14 failures) by an
average of 130 percent. Eq. (5.13) was developed by Fread (1981) and is used in the NWS
Simplified Dam Break Model, SMPDBK (Wetmore and Fread, 1984). Eq. (5.13) yields peak
discharges within a few percent of those produced by a more exact numerical method based
on reservoir level-pool routing described later in Section 5. 3.1.5.

After selecting b and 7, Eq. (5.13) is used to compute Q, which then can be compared
with Q; from Eq. (5.12). If Q, > Q;, then probably either b is too large and/or 7 is too
small.

Selection of breach parameters introduces a varying degree of uncertainty in the
downstream flooding predictions produced by a dam-breach flood model; however, errors in
the breach description and thence in the resuiting peak outflow rate are damped-out as the
flood wave advances downstream, i.e., variations in Q, due to different breach parameters are
reduced as the flood peak advances downstream. The extent of damping is related to the size
of the downstream floodplain, i.e., the wider the floodplain, the greater the extent of
damping. Sensitivity tests on the breach parameters are best determined using a dam-breach
flood model and then comparing the variation in simulated flood peaks at critical downstream
locations. In this way, the real uncertainty in the breach parameter selections will be
determined.

For conservative predictions which err by creating too large of flood waves, values for b
and z should produce an average breach width b in the uppermost range of probable values
for a certain type of dam. The time of failure (7) should be selected in the lower range of
probable values to produce a maximum outflow.

Also, Eq. (5.13) can be used conveniently to test the sens1t1v1ty of b and 7 for a specific
reservoir having properties of V,, H,, and A,. For example, using Eq. (5.13) for a
moderately large reservoir (V, = 250,000 acre-ft, H, = 250 ft, A, = 2,000 acres) it can be
shown that Q, varies in proportion to the variation in b; however, Q, only varies by less than
1/5 of the variation in 7. Although for a fairly small reservoir (V, = 500 acre-ft, H, = 40
ft, A, = 10 acres), it can be shown, using Eq. (5.13), that Q, varies less than 20 percent for
a variation in b of 50 percent; however, Q, varies about 40 percent for a variation in 7 of 50
percent. Thus, it may be generalized, that for large reservoirs Q, is quite sensitive to b and
rather insensitive to 7, while for very small reservoirs Q, is relatively insensitive to b and
quite sensitive to 7.

-10-



5.3. DAM-BREACH FLOOD ROUTING
5.3.1 Dynamic Routing

Flood waves produced by the breaching (failure) of a dam are known as dam-breach flood
waves. They are much larger in peak magnitude, considerably more sharp-peaked, and
generally of much shorter duration with acceleration components of a far greater significance
than flood waves produced by precipitation runoff. The prediction of the extent and time of
occurrence of flooding in the downstream valley is known as flood routing. The dam-breach
wave is modified (attenuated, lagged, and distorted) as it flows (is routed) through the
downstream valley due to the effects of valley storage, frictional resistance to flow,
floodwave acceleration components, flow losses, and downstream channel constrictions and/or
flow control structures. Modifications to the dam-break flood wave are manifested as
attenuation (reduction) of the flood peak magnitude, spreading-out or dispersion of the
temporal varying flood-wave volume, and changes in the celerity (propagation speed) or
travel time of the flood wave. If the downstream valley contains significant storage volume
such as a wide floodplain, the flood wave can be extensively attenuated and its propagation
speed greatly reduced. Even when the downstream valley approaches that of a relatively
narrow uniform rectangular-shaped section, there is appreciable attenuation of the flood peak
and reduction in the wave celerity as the wave progresses through the valley.

There are two basic types of flood routing methods, hydrologic and hydraulic routing.
(See Fread (1985, 1992) for a more complete description of the two types of routing
methods.) The hydrologic methods usually provide a more approximate analysis of the
progression of a flood wave through a river reach than do the hydraulic methods. The
hydrologic methods are used for reasons of convenience and economy. They are most
appropriate, as far as accuracy is concerned, when the flood wave is not rapidly varying, i.e.,
the flood-wave acceleration effects are negligible compared to the effects of gravity and
channel friction. Also, they are best used when the flood wave is very similar in shape and
magnitude to previous flood waves for which stage and discharge observations are available
for calibrating the hydrologic routing parameters (coefficients), and when unsteady backwater
effects are negligible.

In routing dam-break flood waves, a particular hydraulic routing method known as
dynamic routing is most appropriate because of its ability to provide more accuracy in
simulating the dam-break flood wave than that provided by the hydrologic methods, as well
as, other less complex hydraulic methods such as the kinematic wave and the diffusion wave
methods (Fread, 1985, 1992). Of the many available hydrologic and hydraulic routing
techniques, only dynamic routing accounts for the acceleration effects associated with the
dam-break wave and the influence of downstream unsteady backwater effects produced by
channel constrictions, dams, bridge-road embankments, and tributary inflows. Also, dynamic
routing can be used economically, i.e., the computational time can be made rather
insignificant if advantages of certain "implicit" numerical solution techniques are utilized.

Dynamic routing is based on the complete one-dimensional equations of unsteady flow
which are used to route the dam-break flood hydrograph through the downstream valley. The
complete one-dimensional equations are an expanded version of the original equations
developed by Barré de Saint-Venant (1871). The only coefficient that must be extrapolated
beyond the range of past experience is the coefficient of flow resistance. Guidance for the
selection and sensitivity of this parameter is discussed later in Sections 5.4.3 and 5.6.3,
respectively.
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5.3.1.1 Saint-Venant Equations. A modified and expanded form (Fread, 1988, 1992) of the
original one-dimensional Saint-Venant equations (Saint-Venant, 1871; Henderson, 1966;
Chow et al., 1988) consist of a conservation of mass equation, i.e.,

aQ+as°(A+A)_ _
=t q=0 -(5.14)

and the momentum equation, i.c.,
(s, Q)/at + 3(BQ*A)/ox + gA(dh/ox + S, + S,+S)+L+WB=0 (5.15)

where h is the water-surface elevation, A is the active cross-sectional area of flow, A, is the
inactive (off-channel storage) cross-sectional area which may be preferred omitted when used
to represent heavily wooded floodplains, and its effect represented by a higher frictional
resistance for that portion of the cross section, s, and s,, are area-weighted and conveyance-
weighted sinuosity factors, respectively (Delong, 1989) which correct for the departure of a
sinuous in-bank channel from the x-axis of the floodplain, x is the longitudinal mean flow-
path distance measured along the center of the watercourse (channel and floodplain), t is time,
q is the lateral inflow or outflow per lineal distance along the watercourse (inflow is positive
and outflow is negative), § is the momentum coefficient for nonuniform velocity distribution
within the cross section, g is the gravity acceleration constant, S; is the boundary friction
slope, S, is the expansion/contraction (large eddy loss) slope, and S; is the viscous dissipation
slope. :

Friction slope. The boundary friction slope (S,) is evaluated from Manning’s equation
for uniform, steady flow, i.e.,

S, = n3|Q|Q/(x?* A* R*?) = |Q|Q/K? (5.16)

in which n is the Manning coefficient of frictional resistance, R is the hydraulic radius, u is a
units conversion factor (1.49 for US units and 1.0 for SI), and K is the channel conveyance
factor. The absolute value of Q is used to correctly account for the possible occurrence of
reverse (negative) flows. The conveyance formulation is preferred (for numerical and
accuracy considerations) for composite channels having wide, flat overbanks or floodplains in
which K represents the sum of the conveyance of the channel (which is corrected for
sinuosity effects by dividing by s,), and the conveyances of left and right floodplain areas.
When the conveyance factor (K) is used to evaluate S,, the river channel/valley cross-
sectional properties are designated as left floodplain, channel, and right floodplain rather than
as a composite channel/valley section. Special orientation for designating left or right is not
required as long as consistency is maintained. The conveyance factor is evaluated as follows:

K, = nﬁ, AR (5.17)
n

Kk - PAR (5.18)
° n s 12
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K = nﬂ AR (5.19)

r

K=K +K +K (5.20)

in which the subscripts ¢, c, and r designate left floodplain, channel, and right floodplain,
respectively.

Sinuosity Factors. The area-weighted and conveyance-weighted sinuosity factors (s, and
Sm» Tespectively) in Egs. (5.14), (5.15), and (5.18) represent the ratio(s) of the flow-path
distance along a meandering channel to the mean flow-path distance along the floodplain.
They vary with depth of flow according to the following relations:

kel E
AA, + AA + AA
g lk '3 sk rk

s, = (5.21)
y A, +A +A
(5] cy ry
ke
E AKtk + Ach sk + AKrk
s, = &2 (5.22)
' K,’ + Kc, + Kr'

in which AA = A,,, - A,, and s, represents the sinuosity factor for a differential portion of
the flow between the J* depth and the J+1* depth, and K is the conveyance factor.

Expansion/contraction effects. The term (S,.) is computed as follows:
S. = k_A(Q/A)/(2g Ax) (5.23)

in which k,, is the expansion/contraction coefficient (negative for expansion, positive for
contraction) which varies from -1.0/0.4 for an abrupt change in section geometry to -0.3/0.1
for a very gradual, curvilinear transition between cross sections. The A represents the
difference in the term (Q/A)’ at two adjacent cross sections separated by a distance Ax. If the
flow direction changes from downstream to upstream, k., can be automatically changed
(Fread, 1988).

Since dam-break floods usually have much greater velocities, it is important, especially
for nonuniform channels (Rajar, 1978) to include in the Saint-Venant momentum Eq. (5.15)
the expansion/contraction losses via the S,, term defined by Eq. (5.23). The ratio of
expansion/contraction losses (form losses) to the friction losses can be in the range of 0.01 <
Se/S¢ < 1.0. The larger ratios occur for very irregular channels with relatively small n
values.

Momentum correction coefficient. The momentum correction coefficient () for
nonuniform velocity distribution is:

2 2 2
g - KJIA, + K:/Ac + K,/A, (5.24)
K, +K, +KP/A, +A +A)
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in which K is conveyance, A is wetted area, and the subscripts £, c, and r denote left
floodplain, channel, and right floodplain, respectively. When floodplain properties are not
separately specified and the total cross section is treated as a composite section, § can be
approximated as 1.0 < 8 < 1.06 in lieu of Eq. (5.24).

Lateral flow momentum. The term (L) in Eq. (5.15) is the momentum effect of lateral
flows, and has the following form: (a) lateral inflow, L = -qv,, where v, is the velocity of
lateral inflow in the x-direction of the main channel flow; (b) seepage lateral outflow,

L = -0.5qQ/A; and (c) bulk lateral outflow, L = -qQ/A (Strelkoff, 1969).

Mud or debris flows. The term (S) is included in the momentum equation (5.15) in
addition to S, to account for viscous dissipation effects of non-Newtonian flows such as mud
or debris flows. Mine tailings dams, where the viscous contents retained by the dam have
non-Newtonian properties, are dam-breach flood applications requiring the use of S; in
Eq. (5.15). This effect becomes significant only when the solids concentration of the flow is
in the range of about 40 to 50 percent by volume. For concentrations of solids greater than
about 50 percent, the flow behaves more as a landslide and is not governed by the Saint-
Venant equations. S, is evaluated for any non-Newtonian flow as follows:

1N
_x [(b +2Q , &~ 2)(1./x)‘] (5.25)
'—Y. AD bel 2D b :

in which 1 is the fluid’s unit weight, 7, is the fluid’s yield strength, D is the hydraulic depth
(A/B), b = 1/m where m is the exponent of the power function that fits the fluid’s stress(7)-
strain(dv/dy) properties, and « is the apparent viscosity or scale factor of the power function,
i.e., 7, = 7, + x(dv/dy)*. The viscous properties, 7, and «, can be estimated from the solids
concentration ratio of the mud flow (O’Brien and Julien, 1984).

Wind effects. The last term (W,B) in Eq. (5.15) represents the resistance effect of wind
on the water surface (Fread, 1985, 1992); B is the wetted topwidth of the active flow portion
of the cross section; and W, = V,|V,| c., where the wind velocity relative to the water is
V, =V, cos w + V, V, is the velocity of the wind (+) if opposing the flow velocity and (-)
if aiding the flow, w is the acute angle the wind direction makes with the x-axis, V is the
velocity of the unsteady flow, and c, is a wind friction coefficient. This modeling capability
can be used to simulate the effect of potential dam overtopping due to wind set-up within a
reservoir by applying the Saint-Venant equations to the unsteady flow in a reservoir.

5.3.1.2 Implicit Four-Point, Finite-Difference Approximations. The extended Saint-Venant
Egs. (5.14) and (5.15) constitute a system of partial differential equations with two
independent variables, x and t, and two dependent variables, h and Q; the remaining terms
are either functions of x, t, h, and/or Q, or they are constants. The partial differential
equations can be solved numerically by approximating each with a finite-difference algebraic
equation; then the system of algebraic equations are solved in conformance with prescribed
initial and boundary conditions.

Of various implicit, finite-difference solution schemes that have been developed, a four-
point scheme first used by Preissmann (1961) and later a weighted version by many others
(Fread, 1974, 1977, 1985, 1988; Cunge et al., 1980) is most advantageous. It is readily used
with unequal distance steps, its stability-convergence properties are conveniently modified,
and boundary conditions are easily applied.
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Space-time plane. In the weighted four-point implicit scheme, the continuous x-t region
in which solutions of h and Q are sought is represented by a rectangular grid of discrete
points as shown in Fig. 5.3. The x-t plane (solution domain) is a convenient method for
expressing relationships among the variables. The grid points are determined by the
intersection of lines drawn parallel to the x- and t-axes. Those parallel to the t-axis represent
locations of cross sections; they have a spacing of Ax, which need not be the same between
each pair of cross sections. Those parallel to the x-axis represent time lines; they have a
spacing of At, which also need not be the same between successive time lines. Each point in
the rectangular network can be identified by a subscript (i) which designates the x-position or
cross section and a superscript (j) which designates the particular time line.

Ay At )

| i+ 1

X

Figure 5.3 The x-t solution domain for the weighted four-point implicit scheme

Numerical approximations. The time derivatives are approximated by a forward-
difference quotient at point M’ (Fig. 5.3) centered between the i and i+ 1 lines along the
x-axis, i.e.,

aldt = (4" + ¢lli - ¢l - ¢l)/@2 Ay (5.26)

where ¢ represents any dependent variable or functional quantity (Q, s, s., A, A,, q, h).
Spatial derivatives are approximated at point M’ by a forward-difference quotient located
between two adjacent time lines according to weighting factors of 6 (the ratio At’/At shown in
Fig. 5.3) and 144, i.e.,
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Adlax = 6(¢l; - #1")/Ax, + (1-0)(¢l., - #)/AxX, (5.27)

Non-derivative terms are approximated with weighting factors at the same time level (point
M') where the spatial derivatives are evaluated, i.e.,

¢ = 0@ + ¢l)/2 + (1-0)(¢l + ¢l.)/2 (5.28)

Numerical stability. The weighted four-point implicit scheme is unconditionaily, linearly
stable for 6 = 0.5 (Fread, 1974); however, the sizes of the At and Ax computational steps
are limited by the accuracy of the assumed linear variations of functions between the grid
points in the x-t solution domain. Values of 8 greater than 0.5 dampen parasitic oscillations
which have wave lengths of about 2Ax that can grow enough to invalidate or destroy the
solution. The 6 weighting factor causes some loss of accuracy as it departs from 0.5, a box
scheme, and approaches 1.0, a fully implicit scheme. This effect becomes more pronounced
as the magnitude of the ratio (T,/At) decreases where T, is the time of rise of the hydrograph
(time interval from beginning of rise to peak of the hydrograph). Usually, a 6 weighting
factor of 0.60 is used to minimize the loss of accuracy while avoiding the possibility of weak
(pseudo) instability for 6 values of 0.5 when frictional effects are minimal.

Selection of At and Ax computational parameters. The computational time step (At) can
be either specified or automatically determined to best suit the most rapidly rising hydrograph
occurring within the system of rivers containing one or more breaching dams. The time step
is selected according to the following:

At = T,/M (5.29)

where T, is the minimum time of rise of any hydrograph that has been specified at upstream
boundaries or in the process of being generated at a breaching dam. M is user specified
according to the following guidance (Fread, 1993):

M = 2.67 [1 + p/n®/(g™ S>*)] (5.30)

in which p’ = 3.97 (3.13 SI units), n is the Manning friction coefficient, q is the peak flow
per unit channel width, and S, is the channel bottom slope. M usually varies within the
range, 6 < M < 40, with M often assumed to be approximately 20.

The Ax computational distance step can be specified or automatically determined
according to the smaller of two criteria (Fread, 1993). The first criterion is:

Ax < cT,/20 : (5.31)

in which c is the bulk wave celerity (the celerity or velocity associated with an essential
characteristic of the unsteady flow such as the peak of the hydrograph). In most applications,
the wave velocity is well approximated as a kinematic wave, and c is estimated as 3/2V (V is
the flow velocity) or ¢ can be obtained by dividing the distance between two points along the
channel by the difference in the times of occurrence of the peak of an observed flow
hydrograph at each point. Since c can vary along the channel, Ax may not be constant along
the channel.

The second criterion for selecting Ax is the restriction imposed by rapidly varying cross-
sectional changes along the x-axis of the watercourse. Such expansion/contraction is limited
to the following inequality (Samuels, 1985):
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0.635 < A, /A, < 1.576 (5.32)

This condition results in the following approximation for the maximum computational
distance step:

Ax < L'/N (5.33)
where:
N=1+2|A-A,|lA ’ (5.34)

in which L' is the distance between two adjacent cross sections differing from one another by
approximately 50 percent or greater, A is the active cross-sectional area, i and i+1 are index
counters, A = A, if A, > A, (contracting reach) or A = A, if A, < A,

(expanding reach), and N is rounded to the nearest integer value.

Significant changes in the bottom slope of the watercourse also require small distance
steps in the vicinity of the change. This is required particularly when the flow changes from
subcritical to supercritical or conversely along the watercourse. Such changes can require
computational distance steps in the range of 50 to 200 ft.

Automatic interpolation. It is essential for a dam-breach flood routing model to
automatically provide linearly interpolated cross sections at a user specified spatial resolution
in order to increase the spatial frequency at which solutions to the Saint-Venant equations are
obtained. This is often required for purposes of attaining numerical accuracy/stability when
(a) routing very sharp-peaked hydrographs such as those generated by breached dams, (b)
when adjacent cross sections either expand or contract by more than about 50 percent, and (c)
where mixed flow changes from subcritical to supercritical or vice versa. '

Algebraic routing equations. Using the finite-difference operators of Egs. (5.26) to

(5.28) to replace the derivatives and other variables in Egs. (5.14) and (5.15), the following
weighted four-point, implicit finite-difference algebraic equations are obtained:

Qij:ll - Qijq j+1 ijq - Qij j
6 [T] -0 q + (1-0) ,:—AX,—-} - (1-0) q' +

(5.35)

scj;l(A...A J;q " scj;l(A...Ao)g:: - scg(A+A°)§ - sc{;(A-c-Ao)'Ll
2Atj
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(uQ) " * FuQuf” - (a0 - (uQuf | |, | BQUANL - QUMY
2At AX.

f] 1

j*1 i+
hhl - hi

+g K;id = . §‘:ii01 + s“j;l + Sijid + I.o{id + (wrﬁ)‘:d] . (1_0) (5.36)
YAy, - BQYA)Y - [hi, -ni - . .
o) i (R g e o] -
where:
A=A +A)2 (5.37)
S, =02 Q [Q)/e2 A7 R = Q[Q)/K? (5.38)
Q = @Q + Q2 (5.39)
R = A/B, (5.40)
B, = (B + B,)/2 ' (5.41)
K = +K.,)/?2 (5.42)

The terms L and W,B are defined in Eq. (5.15); terms associated with the j* time line
are known from initial conditions or previous time-step computations; and x in Eq. (5.38) is
defined in Eq. (5.16). The Ax distance between cross sections is measured along the mean
flow path of the (channel/valley) watercourse.

5.3.1.3 Solution Procedure. The flow equations are expressed in finite-difference form for
all Ax, reaches between the first and last (N-th) cross section (i = 1,2,...,N) along the
channel/floodplain and then solved simultaneously for the unknowns (Q and h) at each cross
section. In essence, the solution technique determines the unknown quantities (Q and h at all
specified cross sections along the watercourse) at various times into the future; the solution is
advanced from one time to a future time over a finite time interval (time step) of magnitude
At. Thus, applying Eqgs. (5.35) and (5.36) recursively to each of the (N-1) rectangular grids
in Fig. 5.3 between the upstream and downstream boundaries, a total of (2N-2) equations
with 2N unknowns are formulated. Then, prescribed boundary conditions for subcritical flow

(Froude number less than unity, i.e., Fr = Q/(A ‘/gf ) < 1), one at the upstream boundary
and one at the downstream boundary, provide the two additional and necessary equations re-
quired for the system to be determinate. Since disturbances can propagate only in the

downstream direction in supercritical flow (Fr > 1), two upstream boundary conditions and
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no downstream boundary condition are required for the system to be determinate. The
boundary conditions are described later. Due to the nonlinearity of Egs. (5.35) and (5.36)
with respect to Q and h, an iterative, highly efficient quadratic solution technique such as the
Newton-Raphson method is frequently used. Other solution techniques linearize Egs. (5.35)
and (5.36) via a Taylor series expansion or other means. Convergence of the iterative
technique is attained when the difference between successive solutions for each unknown is
less than a relatively small prescribed tolerance. Convergence for each unknown at all cross
sections is usually attained within about one to five iterations. A more complete description
of the solution method may be found elsewhere (Fread, 1985).

The solution of 2N x 2N simuitaneous equations requires an efficient technique for the
implicit method to be feasible. One such procedure requiring 38N computational operations
(+, -, *, /) is a compact, penta-diagonal Gaussian elimination method (Fread, 1971, 1985)
which makes use of the banded structure of the coefficient matrix of the system of equations.
This is essentially the same as the double sweep elimination method (Liggett and Cunge,
1975; Cunge et al., 1980).

When flow is supercritical, the solution technique previously described can be somewhat
simplified. Two boundary conditions are required at the upstream boundary and none at the
downstream boundary since flow disturbances cannot propagate upstream in supercritical
flow. The unknown h and Q at the most upstream cross section are determined from the two
boundary equations. Then, cascading from upstream to downstream, Egs. (5.35) and (5.36)
-are solved for the two unknowns (h;,, and Q,,,) at each cross section by using Newton-
Raphson iteration applied recursively to the two nonlinear equations, Eq. (5.35) and
Eq. (5.36).

5.3.1.4 [nitial Conditions. Values of water-surface elevation (h) and discharge (Q) for each
cross section must be specified initially at time t = 0 to obtain solutions to the Saint-Venant
equations. Initial conditions may be obtained from any of the following: (a) observations at
gaging stations and interpolated values between gaging stations for intermediate cross sections
in large rivers; (b) computed values from a previous unsteady flow solution (used in real-time
flood forecasting); and (c) computed values from a steady-flow backwater solution. The
backwater method is most commonly used, in which the steady discharge at each cross
section is determined by:

Q. =Q +q Ax o i=123,.,N-1 (5.43)

in which Q, is the assumed steady flow at the upstream boundary at time t=0, and q, is the
known average lateral inflow or outflow along each Ax reach at t=0. The water-surface
elevations (h,) are computed according to the following steady-flow simplification of the
momentum equation, Eq. (5.15):

@Q¥A),,, - Q¥A), + gA, (b, - b + Ax; S,) =0 (5.44)

in which A and S,i are defined by Egs. (5.37) and (5.38), respectively. The computations
proceed in the upstream direction (i = N-1, ... 3,2,1) for subcritical flow (they must proceed
in the downstream direction for supercritical flow). The starting water-surface elevation (hy)
can be specified or obtained from the appropriate downstream boundary condition for the
discharge (Qy) obtained via Eq. (5.43). The Newton-Raphson iterative solution method for a
single equation and/or a simple, less efficient, but more stable bi-section iterative technique
can be applied to Eq. (5.44) to obtain h,. The initial water surface profile can also be
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obtained from steady-flow backwater models such as HEC-2 (Hydrologic Engineering Center,
1982). Due to friction, small errors in the initial conditions will dampen-out after several
computational time steps during the solution of the Saint-Venant equations.

5.3.1.5 Upstream Boundary. Values for the unknowns at external boundaries (the upstream
and downstream extremities of the routing reach) of the channel/floodplain, must be specified
in order to obtain solutions to the Saint-Venant equations. In fact, in most unsteady flow

applications, the unsteady disturbance is introduced at one or both of the external boundaries.

Discharge hydrograph. A specified discharge time series (hydrograph) of inflow to the
upstream reservoir is used as the upstream boundary condition. The hydrograph should not be
affected by downstream flow conditions. This hydrograph may be obtained from the
following: (1) historical observations, (2) assumed design hydrograph, or (3) a runoff
hydrograph from specified rainfall-runoff model using calibrated or estimated model
parameters. The upstream boundary is expressed mathematically as follows:

"-Qw-=0 (5.45)

in which Q(t) is the specified discharge time series and the subscript indicates the discharge at
the first cross section, i.e., the upstream boundary. Eq. (5.45) is used for the upstream
boundary if dynamic routing (based on the discretized Saint-Venant equations) commences at
this location. However, if the most upstream cross section represents the inlet to an upstream
reservoir, a simple routing procedure (reservoir level-pool routing) can be used rather than
the considerably more complex dynamic routing if (1) the reservoir is not excessively long
and (2) the inflow hydrograph Q(t) is not rapidly changing with time. Level-pool routing
errors (E,), with a magnitude of less than about 5 percent, can usually be tolerated.

Level-pool routing. In level-pool routing, the reservoir is assumed always to have a
horizontal (level) water surface throughout its entire length; hence, level-pool. The water-
surface elevation (h) changes with time (t), and the outflow from the reservoir is assumed to
be a function of h(t). This is the case for reservoirs with uncontrolled overflow spillways
such as the ogee-crested, broad-crested weir, and morning-glory types. Gate controlled
spillways can be included in level-pool routing if the gate setting (height of the gate bottom
above the gate sill) is a predetermined function of time, since the outflow is a function of h
and the extent of gate opening. Reservoirs, wherein the dam fails and produces a breach
outflow hydrograph, can also be included in the level-pool routing approach.

The upstream boundary condition for this situation is represented by the following
expression:

I - Q) + 43560 S, Ah{*'/Ati = 0 (5.46)
where:
S, =) +sihn (5.47)

Ahi*t = hi*! - b} ' (5.48)



In this approach, the first cross section is located immediately upstream of the dam, and the
second cross section is located immediately downstream of the dam in the tailwater area.
Two internal boundary equations (described later) are used to govern the flow through the
dam, between the first and second cross sections.

Accuracy of level-pool routing. The accuracy of level-pool routing relative to the more
accurate distributed dynamic routing model based on the Saint-Venant equations is shown in
Fig. 5.4. The error (in percent) associated with level-pool routing is expressed as a
normalized error for the rising limb of the outflow hydrograph. The peak outflow is used as
the normalizing parameter. The normalized error (E) is:

N!

Y (@ - f
_ 100 | i3 '
E = a, N7 (5.49)

in which Q, ' is the level-pool routed flow; Q,, is the dynamic routed flow peak, and N' is
the number of computed discharges comprising the rising limb of the routed hydrograph.
Since level-pool routing is based on the assumption of a horizontal water surface along the
length of the reservoir at all times, the error (E,) associated with level-pool routing increases
as (a) reservoir mean depth (D,) decreases, (b) reservoir length (L,) increases, (c) time of rise
(T, of inflow hydrograph decreases, and (d) inflow hydrograph volume decreases. These
effects can be represented by three dimensionless parameters, ¢,, 0,, 0,; where g, = DJL,,

o, = L/[3600 T, (gD,)'?] in which g is the gravity acceleration constant and T, is the time
(hrs) from beginning of rise until the peak of the inflow hydrograph, and o, = hydrograph
volume/reservoir volume. As shown in Fig. 5.4, E, increases as o, increases and as ¢, and o,
decrease; also the influence of o, increases as o, decreases. Level-pool routing is not
recommended when the inflow hydrograph is one generated from an upstream dam failure.

5.3.1.6 Downstream Boundary. For subcritical flow, a specified discharge or water-surface
elevation time series, or a tabular relation between discharge and water-surface elevation
(single-valued rating curve) can be used as the downstream boundary condition.

Loop rating. Another downstream boundary condition can be a computed loop-rating
curve based on the Manning equation, i.e.,

& - i APRE)T (84)” - 0 (5.50)

The loop is produced by using the friction slope (S,) rather than the channel bottom slope (S,)
in the Manning equation. The friction slope exceeds the bottom slope during the rising limb
of the hydrograph while the reverse is true for the recession limb. The friction slope (S) is
approximated by using Eq. (5.15) where L and W, are assumed to be zero while S, and B are
assumed to be unity (Fread, 1985, 1988, 1992), i.e.,

St = -(Q} - Qi")/(eai at)) - @A), - (@/A),,|{eal ax,.) - .51

(i - bi)/ax,,

21-



S0
R =]0.1 = e o e o e e o
x=/0.8

40

c-lz 0.0004
30

P
Eq (® P
P

o= 0.002

20
—ee
A= = 0.004
=== a1~ "
LA Tad 27"
J,,_.—-ﬂ”" " Az==
g o o
10 ] 2=
- TR eyl
===z === =235
1 5"“55“ -.‘—.ﬂ’ul

0

Figure 5.4 Level-pool routing compared to dynamic routing showing the normalized error
(E,) of the outt_low hydrograph as a function of dimensionless parameters o,, g,, and g,

The loop-rating boundary equation allows the unsteady wave to pass the downstream
boundary with minimal disturbance by the boundary itself, which is desirable when the
routing is terminated at an arbitrary location along the channel/floodplain and not at a location
of actual flow control such as a dam or waterfall, or where the flow is affected by
downstream backwater conditions produced by tidal action, reservoirs, or tributary inflow.

Critical flow. The downstream boundary condition can also be a critical flow section
such as the entrance to a waterfall or a steep channel reach, i.e.,

- et (AF)7 -0 5.52)

Critical flow occurs when the bottom slope (S,) equals or exceeds the critical slope (S.) which
can be easily computed as follows:

S, = i n?/D"» (5.53)
where 4 = 14.6 for US units and 4 = 9.8 for SI units.

Rating curve. When the downstream boundary is a stage/discharge relation (rating
curve), the flow at the boundary should not be otherwise affected by flow conditions further
downstream. Although there are often some minor effects due to the presence of cross-
sectional irregularities downstream of the chosen boundary location, these usually can be
neglected unless the irregularity is so pronounced as to cause significant backwater or
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drawdown effects. Reservoirs, major tributaries, or tidal effects located below the
downstream boundary which cause backwater effects at the boundary should be avoided.
When either of these situations are unavoidable, the routing reach should be extended
downstream to the dam in the case of the reservoir or to a location downstream of where the
major tributary enters. Sometimes the routing reach may be shortened by moving the
downstream boundary to a location further upstream where backwater effects are negligible.

5.3.1.7 Internal Boundaries. Often along the channel/floodplain, there are locations such as
a dam, bridge, or waterfall (short rapids) where the flow is rapidly varied in space rather than
gradually varied. At such locations (internal boundaries), the Saint-Venant equations are not
applicable since gradually varied flow is a necessary condition for their derivation. Empirical
water elevation-discharge relations such as weir-flow are utilized for simulating rapidly
varying flow. At internal boundaries, cross sections are specified for the upstream and
downstream extremities of the section where rapidly varying flow occurs. The Ax reach
containing an internal boundary requires two internal boundary equations; since, as with any
other Ax reach, two equations equivalent to the Saint-Venant equations are required. One of
the required internal boundary equations represents conservation of mass with negligible time-
dependent storage, i.e.,

Mt -Qin =0 (5.54)

Dam. The second equation is usually an empirical rapidly varied flow relation . If the
internal boundary represents a dam, the following equation can be used: .

Mt -@Q +Qyt=0 (5.55)

in which Q, and Q, are the spillway and dam-breach flow, respectively. In this way, the
flows Q; and Q,,, and the elevations h; and h,,, are in balance with the other flows and
elevations occurring simultaneously throughout the entire flow system which may consist of
additional downstream dams which are treated as additional internal boundary conditions via
Eqgs. (5.54) and (5.55). In fact, this approach can be used to simulate the progression of a
dam-break flood through an unlimited number of reservoirs located sequentially along the
valley. The downstream dams may also breach if they are sufficiently overtopped. The
spillway flow (Q,) is computed from the following expression:

Q, = cL®, - h)"* + cA M - h)*S + c L@, - h) +Q, (5.56)

in which c, is the uncontrolled spillway discharge coefficient, h, is the uncontrolled spillway
crest, c, is the gated spillway discharge coefficient, h, is the center-line elevation of the gated
spillway, c, is the discharge coefficient for flow over the crest of the dam, L, is the spillway
length, and Q, is a constant outflow term which is head independent or it may be a specified
discharge time series. The uncontrolled spillway flow or the gated spillway flow can also be
represented as a table of head-discharge values. The gate flow may also be specified as a
function of time via a known time series for A(t). The breach outflow (Q,) is computed as
broad-crested weir flow (Fread, 1977, 1985, 1988, 1992; Fread and Lewis, 1988), i.e.,

Q, =ck[3.1 b, (o - h)*S +2.45 z (b, - h)*] (5.57)
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in which c, is a small correction for velocity of approach, b; is the instantaneous breach
bottom width, b; is the elevation of the water surface just upstream of the structure, h, is the
elevation of the breach bottom as described by Eq. (5.2) in which b, is assumed to be a linear
function of time (t,) from beginning of the breach formation time (7), z is the side slope of
the breach, and k, is the submergence correction factor due to the downstream tailwater
elevation (h), i.e.,

k =1.0 , h* < 0.67 (5.58)

k, =10 - 2230"° - 0.67)° h* > 0.67 (5.59)
where:

h* = &, - h)/(h; - h) (5.60)
If the breach is formed by piping, Eq. (5.57) is replaced by an orifice equation:

Q =48 A -h)”? (5.61)
where:

A, =[b +z(h, - b)](h, - h,) (5.62)

in which h, is the specified center-line elevation of the pipe. Each of the terms in Eq. (5.56)
may be modified by a submergence correction factor similar to k, which can be computed by
Eq. (5.59) in which h, is replaced by h,, h,, and h,, respectively.

Bridge. If the internal boundary represents highway/railway bridges together with their
earthen embankments which cross the floodplain, Egs. (5.54) and (5.55) can still be used
although Q, in Eq. (5.55) is computed by the following contracted bridge flow expression:

Q = Cbﬁ A& - h )%+ Ck - h)* (5.63)

in which C, is a coefficient of bridge flow, C, is the coefficient of flow over the crest of the
road embankment, h, is the crest elevation of the embankment, and k, is similar to Egs.
(5.58)~(5.60) except h, is replaced by h,. A breach of the embankment is treated the same as
with dams.

5.3.1.8 Levee Overtopping/Floodplain Interactions. Flows which overtop levees located

along either or both sides of a main-stem river and/or its principal tributaries can be treated
as lateral flow (q) in Egs. (5.14)-(5.15) where the lateral flow diverted over the levee is
computed as broad-crested weir flow. This overtopping flow is corrected for submergence
effects if the floodplain water-surface elevation sufficiently exceeds the levee crest elevation.
After the flood peak passes, the overtopping flow may reverse its direction when the
floodplain water-surface elevation exceeds the river water-surface elevation, thus allowing
flow to return to the river. The overtopping broad-crested weir flow is computed according to
.the following:



q=-ck (-h)" (5.64)

where k,, the submergence correction factor, is computed as in Egs. (5.58)-(5.60) except

h* = (b, - h) / (b - b)), in which ¢, is the weir discharge coefficient, h, is the levee-crest
elevation, h is the water-surface elevation of the river, and hy, is the water-surface elevation
of the floodplain. Flow in the floodplain can affect overtopping flows via the submergence
correction factor. Flow may also pass from the waterway to the floodplain through a time-
dependent crevasse (breach) in the levee via a breach-flow equation similar to Eq. (5.57).
The floodplain, which is separated from the principal routing channel (river) by the levee,
may be treated as: (a) a dead-storage area (A,) in the Saint-Venant equations; (b) a tributary
which receives its inflow as lateral flows (the flows from the river which overtop the levee-
crest) which are simultaneously dynamically routed along the floodplain; and (c) the flows -
and water-surface elevations can be computed by using a level-pool routing method
particularly if the floodplain is divided into compartments by levees (dikes) or elevated
roadways located somewhat perpendicular to the river levee(s).

5.3.1.9 Supercritical/Subcritical Mixed Flow. Flow can change with either time or distance
along the routing reach from supercritical to subcritical while passing through critical flow, or

conversely. This "mixed flow" requires special treatment to prevent numerical instabiiities in
the solution of the Saint-Venant equations. This difficulty can be addressed by using a
concept based on avoiding the use of the Saint-Venant equations at the point where mixed
flow occurs. An enhanced mixed flow algorithm automatically subdivides the total routing
reach into sub-reaches wherein only subcritical or supercritical flows occur (Fread, 1983,
1985, 1988). The transition locations where flow changes from subcritical to super<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>